
CS106B
Winter 2020

Handout 31
March 9, 2020

Section Handout 9

This final section handout consists of a bunch of cumulative review problems from throughout the quar-
ter. Feel free to work on whatever seems interesting or useful!

Week One: Basic Recursion and String Processing
1. Write a function that reverses a string “in-place.” That is, you should take the string to reverse as

a reference parameter and modify it so that it ends up holding its reverse. Your function should
use only O(1) auxiliary space.

2. Imagine you have a string containing a bunch of words from a sentence. Here’s a nifty little algo-
rithm for reversing the order of the words in the sentence: reverse each individual string in the
sentence, then reverse the entire resulting string. (Try it – it works!) Go and code this up in a
way that uses only O(1) auxiliary storage space.

3. Suppose that you are interested in setting up a collection point to funnel rainwater into a town's
water supply. The town is next to a ridge, which for simplicity we will assume is represented as
an array of the elevations of different points along the ridge.

When rain falls on the ridge, it will roll downhill along the ridge. We'll call a point where water
naturally accumulates (that is, a point lower than all neighboring points) a “good collection
point.” For example, here is a possible ridge with good collection points identified:

11 8 4 2 5 3 12 10 14 15 6

Write a recursive function to find a good collection point. See if you can solve this with a solu-
tion that runs in time O(log n). As a hint, think about binary search. You can assume that all ele-
ments in the array are distinct.

1 / 5

Week Two: Container Classes
1. Write a function that, given a HashMap<string, int> associating string values with integers,

produces a HashMap<int, HashSet<string>> that’s essentially the reverse mapping, associat-
ing each integer value with the set of strings that map to it. (This is an old job interview question
from 2010.)

2. How are Map and HashMap implemented internally? What’s one advantage of Map over HashMap?
One advantage of HashMap over Map?

3. A compound word is a word that can be cut into two smaller strings, each of which is itself a
word. The words “keyhole” and “headhunter” are examples of compound words, and less obvi-
ously so is the word “question” (“quest” and “ion”). Write a function that takes in a Lexicon of
all the words in English and then prints out all the compound words in the English language.

Week Three: Graphical Recursion and Recursive Enumeration
1. Pull up the code we wrote in lecture to generate the Sierpinski carpet. To avoid drawing the cen-

ter of the carpet, we used the code

if (row != 1 || col != 1) { … }

to avoid drawing the center square. What would happen if we changed the || to an &&? Draw the
order-2 image that results.

2. Imagine you have a 2 × n grid that you’d like to cover using 2 × 1 dominoes. The dominoes need
to be completely contained within the grid (so they can’t hang over the sides), can’t overlap, and
have to be at 90° angles (so you can’t have diagonal or tilted tiles). There’s exactly one way to tile
a 2 × 1 grid this way, exactly two ways to tile a 2 × 2 grid this way, and exactly three ways to tile
a 2 × 3 grid this way (can you see what they are?) Write a recursive function that, given a num-
ber n, returns the number of ways you can tile a 2 × n grid with 2 × 1 dominoes.

Week Four: Recursive Enumeration and Backtracking
1. Given a positive integer n, write a function that finds all ways of writing n as a sum of nonzero

natural numbers. For example, given n = 3, you’d list off these options:

3 2 + 1 1 + 2 1 + 1 + 1

2. Solve the previous problem assuming that order doesn’t matter, so 1 + 2 and 2 + 1 would be
treated identically. Don’t generate the same option more than once.

3. Write a function that, given a set of strings and a number k, lists all ways of choosing k elements
from that list, given that order does matter. For example, given A, B, and C and k = 2, you’d list

A, B A, C B, A B, C C, A C, B

4. One of the problems from the “Container Classes” section discussed compound words, which are
words that can be cut into two smaller pieces, each of which is a word. You can generalize this
idea further if you allow the word to be chopped into even more pieces. For example, the word
“longshoreman” can be split into “long,” “shore,” and “man,” and “whatsoever” can be split into
“what,” “so,” and “ever.” Write a function that takes in a word and returns whether it can be split
apart into two or more smaller pieces, each of which is itself an English word.

5. You are standing on the upper-left corner of a grid of nonnegative integers. You’re interested in
moving to the lower-right corner of the grid. The catch is that at each point, you can only move
up, down, left, or right a number of steps exactly equal to the number you’re standing on. For ex-
ample, if you were standing on the number three, you could move exactly three steps up, exactly
three steps down, exactly three steps left, or exactly three steps right. (You can’t move off the
board). Write a function that determines whether it’s possible to get from the upper-left corner
(where you’re starting) to the lower-right corner while obeying these rules.

2 / 5

Week Five: Big-O and Sorting
1. Below are eight functions. Determine the big-O runtime of each of those pieces of code.

void function1(int n) {
 for (int i = 0; i < n; i++) {
 cout << '*' << endl;
 }
}

void function5(int n) {
 if (n == 0) return;
 function5(n – 1);
}

void function2(int n) {
 for (int i = 0; i < n; i++) {
 for (int j = 0; j < n; j++) {
 cout << '*' << endl;
 }
 }
}

void function6(int n) {
 if (n == 0) return;
 function6(n – 1);
 function6(n – 1);
}

void function3(int n) {
 for (int i = 0; i < n; i++) {
 for (int j = i + 1; j < n; j++) {
 cout << '*' << endl;
 }
 }
}

void function7(int n) {
 if (n == 0) return;
 function7(n / 2);
}

void function4(int n) {
 for (int i = 1; i <= n; i *= 2) {
 cout << '*' << endl;
 }
}

void function8(int n) {
 if (n == 0) return;

 for (int i = 0; i < n; i++) {
 cout << '*' << endl;
 }

 function8(n / 2);
 function8(n / 2);
}

2. What is the big-O runtime of this function in terms of n, the number of elements in v?

int squigglebah(const Vector<int>& v) {
 int result = 0;
 for (int i = 0; i < v.size(); i++) {
 Vector<int> values = v.subList(0, i);
 for (int j = 0; j < values.size(); j++) {
 result += values[j];
 }
 }
 return result;
}

3 / 5

Week Six: Dynamic Arrays
1. The int type in C++ can only support integers in a limited range (typically, -231 to 231 – 1). If

you want to work with integers that are larger than that, you’ll need to use a type often called a
big number type (or “bignum” for short). Those types usually work internally by storing a dy-
namic array that holds the digits of that number. For example, the number 78979871 might be
stored as the array 7, 8, 9, 7, 9, 8, 7, 1 (or, sometimes, in reverse as 1, 7, 8, 9, 7, 9, 8, 7). Imple-
ment a bignum type layered on top of a dynamic array. Your implementation should provide
member functions that let you add together two bignums or produce a string representation of a
bignum, and a constructor that lets you initialize the bignum to some integer value. For simplic-
ity, you don’t need to worry about negative numbers.

2. Implement a version of the Grid<int> type that supports creating a grid of a certain size, read-
ing from grid locations, and writing to grid locations. Do all your own memory management.

Week Seven: Hashing and Hash Tables
1. Is it ever possible, in a linear probing hash table, that a lookup for an item whose hash code is 5

would end up finding that element in slot 3? Justify your answer.

2. Suppose you insert the numbers 1, 2, 3, 4, 5, …, n into one linear probing table, then insert the
numbers n, n-1, n-2, …, 3, 2, 1 into another linear probing table. Is it guaranteed that the internal
structure of the two hash tables will be the same? Is it possible that their internal structure will be
the same? Is it never going to be the case that the internal structure will be the same?

Week Eight: Linked Lists
1. Write a function that, given a pointer to a singly-linked list and a number k, returns the kth-to-

last element of the linked list (or a null pointer if no such element exists). How efficient is your
solution, from a big-O perspective? As a challenge, see if you can solve this in O(n) time with
only O(1) auxiliary storage space.

2. Write an implementation of insertion sort that works on singly-linked lists.

3. Imagine that you have two linked lists that meet at some common point in a Y shape (the head
pointer of each linked list would be on the top of the Y, and they merge at a common node).
Write a function that finds their intersection point. The “branches” of the Y don’t have to have
the same lengths, and the elements stored within the linked lists might coincidentally match even
before their intersection point. As a challenge, see if you can do this in O(1) auxiliary space.

4 / 5

Week Nine: Binary Trees
1. A binary tree (not necessarily a binary search tree) is called a palindromic tree if it’s its own mir-

ror image. For example, the tree on the left is a palindromic tree, but the tree on the right is not:

Write a function that takes in a pointer to the root of a binary tree and returns whether it’s a
palindrome tree.

2. (The Great Tree List Recursion Problem, by Nick Parlante) A node a binary tree has the same
fields as a node in a doubly-linked list: one field for some data and two pointers. The difference
is what those pointers mean: in a binary tree, those fields point to a left and right subtree, and in
a doubly-linked list they point to the next and previous elements of the list. Write a function that,
given a pointer to the root of a binary search tree, flattens the tree into a doubly-linked list, with
the values in sorted order, without allocating any new cells. You’ll end up with a list where the
pointer left functions like the prev pointer in a doubly-linked list and where the pointer right
functions like the next pointer in a doubly-linked list.

5 / 5

	Week One: Basic Recursion and String Processing
	Week Two: Container Classes
	Week Three: Graphical Recursion and Recursive Enumeration
	Week Four: Recursive Enumeration and Backtracking
	Week Five: Big-O and Sorting
	Week Six: Dynamic Arrays
	Week Seven: Hashing and Hash Tables
	Week Eight: Linked Lists
	Week Nine: Binary Trees

